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Abstract—Stability of a switching system, which comes to existence when stabilizing a chain
of two integrators by a feedback in the form of nested saturators, is studied. The use of the
feedback in the form of nested saturators makes it possible to take into account boundedness
of the control resource and to ensure the fulfillment of the phase constraint on the velocity
of approaching the equilibrium state, which is especially important in the case of large initial
deviations. A Lyapunov function is constructed by means of which global asymptotic stability
of the closed-loop system is proved for any positive feedback coefficients.
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1. INTRODUCTION

Stabilization of chains of integrators is one of the topical control problems. The interest to this
problem is due to the fact that original models in many applications (e.g., models of mechanical
planar systems) are specified as chains of integrators. Moreover, controls developed for chains
of integrators are easily extended to other classes of systems. In last decades, to stabilize such
systems, an approach based on the use of special feedbacks in the form of nested nonsmooth
saturation functions (saturators) is widely used. This work is a sequel of the paper [1] studying
stability of the second-order integrator by a feedback in the form of nested saturators.

The interest to the feedback in the form of nested saturators is explained by the number of
remarkable properties of the closed-loop system obtained. Advantages of such feedbacks, as well
as topicality of the problem of stabilizing chains of integrators are discussed in many publications,
for example, in [1–8]. The use of a feedback in the form of nested saturators, however, results
in a quite complex nonlinear switching system, stability analysis of which presents a nontrivial
task. The proofs of global stability available in the literature refer basically to the second-order
systems [1, 2, 5] and to feedbacks of special forms. For example, the proof of global stability of
the second-order system in [2], which is based on the construction of a Lyapunov function, is not
applicable to the system with the inverse order of the saturator nesting considered in [1] (see [1] for
more detail). The general case of the n-dimensional integrator stabilized by a feedback in the form
of n nested saturators is discussed in [3, 4]. However, global stability of the closed-loop system has
been proved only for the case where limit values of the nested saturation functions satisfy special
conditions, which are seldom met in practice [3, Theorem 2.1].

In [1], global asymptotic stability of the second-order integrator closed by the feedback in the
form of nested saturators has been proved for one particular case where the feedback coefficients

391



392 PESTEREV, MOROZOV

are selected from a one-parameter family. The goal of this work is to present a simpler proof of
global stability of this system, which is based on the construction of a Lyapunov function and is
valid in the general case of arbitrary choice of the feedback coefficients.

2. PROBLEM STATEMENT

We consider the problem of stabilizing the second-order integrator

ẋ1 = x2, ẋ2 = U(x), x ≡ [x1, x2]
T, (1)

by the feedback in the form of nested saturators:

U(x) = −satk4(k3(x2 + satk2(k1x1))), (2)

where satd(·), d = {k2, k4} is the non-smooth saturation function, satd(w) = w when |w| 6 d and
satd(w) = d sgn(w) when |w| > d; k4 is the control resource, and k2 is the maximum velocity of
approaching the equilibrium. The right-hand side of (2) determines partition of the phase plane
into sets D1, D2, and D3 (Fig. 1). The set D1 includes the points where both saturators are not
saturated (the inclined strip bounded by the dashed lines in Fig. 1); the set D2 = D−

2 ∪D+
2 , the

points where only the internal saturator is saturated; and D3 = D−
3 ∪D+

3 , all points where the
external saturator is saturated (see [1, 7] for more detail). It can be seen from formula (2) that
U(x) is a piecewise linear function and that (1), (2) is a switching system consisting of five linear
subsystems the switchings between them depend on the system state and occur when the trajectory
intersects the boundaries between the sets.

The original problem depending on the four parameters reduces to the study of two-parameter
problem if we turn to the dimensionless variables x̃1 = k4x1/k

2
2 , x̃2 = x2/k2 and time t̃ = k4t/k2 [1].

In the dimensionless model, two coefficients turn to ones, k̃4 = k̃2 = 1, and the two others are
defined by the formulas k̃1 = k1k

2
2/k4 and k̃3 = k2k3/k4. In what follows, we assume that all

variables and constants are dimensionless and use the same (without tilde) notation for them. In
the dimensionless model, feedback (2) takes the form [1]

U(x1, x2) = −sat(k3(x2 + sat(k1x1))), (3)

where the designation sat(·) without lower index is used for the saturation functions with the unit
limit: sat(·) ≡ sat1(·).
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Fig. 1. Partition of the phase plane into the sets D1, D2, and D3.
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Note that feedback (3) guarantees the fulfillment of the phase constraint |x2(t)| 6 1 for any
initial deviation x1(0) as longs as |x2(0)| 6 1 [7]; i.e., the domain Π = {x : |x2| 6 1} is an invariant
set of system (1), (3). Moreover, a desired type of the equilibrium state (a node or focus) and any
desired value of the exponential rate of deviation decrease in the neighborhood of the equilibrium
point can be ensured by an appropriate selection of the coefficients k1 and k3 [1, 7].

It is easy to show that the above phase constraint is fulfilled for any initial conditions starting
from a certain finite time. Indeed, consider the function v(x) = x22, which is positive definite for
all x2 6= 0, and differentiate it by virtue of system (1), (3): v̇(x) = −2x2sat(k3(x2 + sat(k1x1))).
Function v̇(x) is negative definite in the domain |x2| > 1; i.e., |x2| 6 1 is an attracting set for
solution of system (1), (3). Then, taking into account that no entire trajectory can belong to the
set |x2| = 1, it follows that any trajectory enters the invariant set |x2| 6 1 in a finite time.

In [1], it was proved that system (1), (3) is globally asymptotically stable in the particular case
of selecting coefficients k1 and k3 from a one-parameter family

k1 = λ/2, k3 = 2λ, λ > 0, (4)

where λ is the exponential rate of deviation decrease in the neighborhood of the origin. The proof
is not difficult but rather cumbersome and heavily relies on the fact that k1 and k3 are given by (4);
therefore, it cannot be extended to the case of independent choice of the coefficients.

The proof of global asymptotic stability presented below is based on the construction of a
Lyapunov function of system (1), (3) and is valid for arbitrary positive feedback coefficients.

3. PROOF OF GLOBAL ASYMPTOTIC STABILITY

Theorem 1. System (1), (3) is globally asymptotically stable for any positive feedback coefficients.

Proof. Let us prove that the function

V (x) =
1

2
x22 +

x1∫

0

sat(k3sat(k1s))ds (5)

is the Lyapunov function of system (1), (3). From the definition of the saturation function, it
follows that the inequalities sat(s)s > 0 and sat(f(s))s > 0 ∀s 6= 0 hold, where f(s) is an arbitrary
continuous nondecreasing function such that f(0) = 0. Then, it follows that the integral term in (5)
and, hence, the function V (x) are positive in the entire R2. It is also evident that V (x) tends to
infinity as ‖x‖ → ∞. Differentiating V (x) by virtue of system (1), (3), we obtain

V̇ = −x2sat(k3(x2 + sat(k1x1))) + sat(k3sat(k1x1))x2

= −[sat(k3(x2 + sat(k1x1))) − sat(k3sat(k1x1))]x2.

Since the saturator is a nondecreasing function, ∀s 6= 0 and ∀s0, the inequality [sat(s+ s0)−
sat(s0)]s > 0 holds, from which it follows that V̇ (x) 6 0.

When k3 < 1, the expression in the square brackets and, hence, the derivative vanish only on
the set x2 = 0, which contains no entire trajectories except for x = 0. If k3 > 1, the derivative
vanishes also on the subsets of sets D+

3 and D−
3 on which both addends in the square brackets are

simultaneously equal to +1 and −1, respectively. It is easy to see that these subsets cannot contain
entire trajectories either. Indeed, in D−

3 and D+
3 , trajectories of the system are parabolas

x1 = ∓
1

2
x22 + C.
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Since none of these parabolas can lie entirely in D−
3 or D+

3 (see Fig. 1) and the system moves with
a constant acceleration, the trajectory inevitablely enters either D1 or D2 in a finite time.

Thus, function V (x) satisfies all conditions of the Barbashin–Krasovskii theorem [9], and, hence,
the origin is an asymptotically stable equilibrium state of system (1), (3) in the whole. The theorem
is proved.

4. NUMERICAL ILLUSTRATION

To illustrate the above discussion, we constructed level lines of the Lyapunov function (5) for
system (1), (3) with the coefficients k1 = 1 and k3 = 3. Figure 2 shows one of the level lines (the
solid curve) and several phase trajectories (the dotted curves) with the initial points (marked by
circles) lying on the level line. As can be seen from the figure, none of the trajectories leaves the
invariant set bounded by the level line. The trajectory segments going along the boundary of the
set lie in the subsets of sets D−

3 and D+
3 in which the derivative of the Lyapunov function by virtue

of the system is equal to zero. After intersecting the boundary with set D1 or D2, the derivative
becomes negative, and the trajectory goes inside the invariant set. Other numerical examples
illustrating efficiency of the feedback in the form of nested saturators can be found in [6, 7].
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Fig. 2. A level line of the Lyapunov function and phase trajectories.

5. CONCLUSIONS

The problem of stabilizing a chain of two integrators by a feedback in the form of two nested
saturators has been considered. By turning to dimensionless variables, the original problem de-
pending on four feedback coefficients has been reduced to study of stability of a two-parameter
system. Advantages of the feedback in the form of nested saturators have been discussed. The
main result of the work is construction of a Lyapunov function of the system, by means of which
global stability of the closed-loop system for any positive feedback coefficients has been proved.
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